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SOME STABILITY THEOREMS FOR ORDINARY DIFFERENCE EQUATIONS

by

James Hurt

LaSalle [1,2,3] and otheré have developed a generalization
of the "second method" of Liapunov which utilizes certain invariance
properties of solutions of ordinary differential equetions. In-
variance properties of solutions of ordinary difference equations
are utilized here to develop stability theorems similar to those
in LaSalle [1]. As illustrations of the application of these theorems,
a region of convergence is derived for the Newton-Raphson and
Secant iteration methods. A modification of one of these theorems
is given and applied to study the effect of round-off errors in

the Newton-Raphson and Gauss-Seidel iteration methods.

J. INTRODUCTION. An ordinary difference equation is an equation of

the type given in (1),

x(k+l) = f£(k,x(k)) (1)

where each x and f(k,x) are elements of X, an n-dimensional
vector space. Since the notation used in (1) can become very
clumsy, the somewhat neater E notation is used. If E 1is defined

as the operator where Ex(k) = x(k+1l), then equation (1) can be



written as in (1%)

Ex = f(k,x) (1%)

where the arguments of x and Ex are understood to be k.

A function x(k;ko,xo) is called a solution of the
difference equation (1) if it satisfies the following three
conditions.

a) x(k;ko,xo) is defined for k_ Sk = k + K for

some integer K > O.
b) x(ko;ko,xo) = x_, the initial vector.
c) x(k+l;ko,xo) = f(k,x(k;ko,xo)) for k Sk Sk + K-1.

Hereafter, it is assumed that a solution to (1) exists
and is unique for all k 2 ko and that this soluticn is continuous
in the initial vector X - More specifically, if {xn} is a
sequence of n-vectors with X —>xo as n — o, then the solutions

through X converge to the solution through X,

x(k;ko,xn) - x(k;k,x ) as n -

For all k on any compact interval, this convergence is assumed
to be uniform,
For any n-vector x, let |x| denote any vector norm of

X. For any non-empty set of n-vectors A, denote the distance from




X to A by d(x,A).

d(x,A) = inf {|x-y| : y € A}.

"L Let

Introduce the vector « to X and define d(x,») = |x
A¥ = AU {=} and d(x,A*) = min (d(x,A), d(x,»)}.

A point p € X 1is a positive limit point of x(k) if

there is a sequence {kn} with k ., >k —=®, and x(kn) -p

1

as n - », The union of all the positive limit points of x(k)

is the positive limit set of x(k).

II. THE GENERAL STABILITY THEOREM. Let G be any set in the vector
space X. G ﬁay be unbounded. Let V(k,x) and W(x) be real
valued functions defined for all k 2 ko and all x in G. If
V(k,x) and W(x) are continuous in x, V(k,x) is bounded below,

and

&V(k,x) = V(k+1, f(k,x))-V(k,x) £ - W(x) =0
for all k = ko and all x in G, then V 1is called a Liapunov
function for (1) on G. Let G be the closure of G, including

w if G is unbounded, and define the set A by (2).

A={x e G : W(x) = 0} (2)



The following result is the difference analog to Theorem

1 in LaSalle [1].

THEOREM 1. If there exists a Liapunov function V for (1) on G,
then each solution of (1) which remains in G for all k 2 ko

approaches the set A* = AU {®}] as k — o,

PROOF: Let x(k) be a solution to (1) which remains in G for
all k 2 k_. Then, by assumption, V(k,x(k)) 1is a monotone non-
increasing function which is bounded from below. Hence, V(k,x(k))

must approach a limit as k — », and W(x(k)) must approach zero

2
as k - o, From the definition of A¥ and the continuity of
W(x), we get d(x(k),A*) -0 as k -, Note that if G is

unbounded and there exists a sequence (xn] such that x € G,

, then it is possible to have

Ixni - ®, and W(xn) -0 as n -
an unbounded solution under the conditions of the theorem. If
G is bounded or if W(x) is bounded away from zero for all
sufficiently large x, then all solutions which remain in G are
bounded and approach a closed, bounded set contained in A as
k — =,

This theorem can be used to easily prove all of the
usual Liapunov stability theorems. See, for example, Hahn [1]
and Kalman and Bertram [1]. For example, if G is the entire
space X and W(x) 1is positive definite, then A = {0} and

all solutions approach the origin as k — ». However, as the




following example shows, other considerations can be used to
determine if a solution x(k) will remain in G. The difference
equation is given in equation (3).

Ex for x>0 (3)

[}
»

Let the set G be the set of positive numbers. Then,
if x>0, we get Ex >0 from equation (3) and all solutions
which start in G remain in G. The function V(k,x) = V(x)

V(x) = x

1+x

is a Liapunov function for (3) on G since V(x) 2 0 and

2 x o x(1x)(P-1) |

N(x) =
1+x Lix® (l+x2)(l+x4)

-W(x) £0

We have W(x) =0 when x =0, x =1, and W(x) 20 as x »w,
Thus, the set A* is the set (0,1,»}. Each solution with x, >0

approaches A* as k -, A look at the solutions to (3)

k
x(k) = xg-2)

shows that this is exactly the case. If x_ = 1, then x(k) =1
for all k. If x <1, then x(k) >0 for even k and x(k) -

for odd k.



solutions

such case

COROLILARY

functions.

Quite often the set G can be constructed so that all
which start in some smaller set Gl remain in G. One

is covered in the following corollary.

1. Let u(x) and v(x) be continuous real-valued

Let V(k,x) Dbe such that

u(x) = V(k,x) = v(x)

for all k 2 k_. For some 1, define the sets G = G(n) and

G, = Gl(n) as

If V is

i

G(n) = {x : u(x) < n}

6,(n) = (x : v(x) <)

a Liapunov function for (1) on G(n), then all solutions

which start in Gl(n) remain in G(n) and approach A as k —w,

PROOF':

Then

Let x(k) %be a solution of (1) with x(ko) € Gl(n).

u(x(k)) = V(k,x(k)) = V(ko,x(ko)) s v(x(ko)) <7

for all k 2 k , implying that x(k) € G(n) for all k 2 k_.

Theorem 1 and Corollary 1 give sufficient conditons for

the positive limit set of a solution x(k) to be contained in A.




There is an art to finding the best V, W, u, and v, i.e., the
functions V, W, u, and v which give the largest G, the largest
Gl’ and the smallest A. Often more information about the behavior
of the solutions can be obtained by considering several different
Liapunov functions and combining the results from each.

The following exemple is taken from Vidal and Laurent

[1]. The sampled control systems covered in this paper are

described by the difference equation (4).

Ex = M(k,x)x | (&)

where M(k,x) is a matrix. For any vector norm, le, define

the norm of the matrix M(k,x) by

|M(k,x)| = min {b : |Mk,x)y| = Db|ly] for all y # 0}

Then clearly, |M(k,x)x| = |M(k,x)||x

. For the difference equation

(4), try the Liapunov function V(k,x) = |x|. Then

1!

N (k, x) |M(k,X)X| - le

WA

(IM(x,x)] - D))= .

Let u(x) = v(x) = V(k,x) = | x|, then Gl(n) =a6(n) = {x:}x] <n}.

a(x) and

A

For all x in G(n) and all k= k_let | M(k, x)|



W(x) = +(1-a(x))|x|. Then we have

N(k,x) = -W(x) .

If a(x) <1 for all x in G(n), then -W(x) £ 0, the set A

is the origin and possibly something on the boundary of G(7).
Since V(k,x(k)) is a non-increasing function of k and the
boundary of G(7n) is a level surface of V(k,x), the solutions
cannot approach the boundary of G(n). Hence, all solutions which
start in G(n) remain in G(n) and approach the origin as k — .,

The set G(n) is called a domain of stability for the system (k).

The best G(n) 1s chosen by picking 1 as large as possible
without violating the inequality a(x) <1 for all x in G(n).

Various choices for the vector norm will result in
various a(x) and various domains of stability. Since each is
sufficient, the union of all these domains of stability is also
a domain of stability.

If M(k,0) is a constant matrix, independent of Xk,
and the special radius of M(k,0) is less than one, then there
is a vector norm such that a(x) 1is continuous in x and a(0) < 1,
indicating that there is a non-empty domain of stability (see the
Appendix).

The following example illustrates that the results

obtained in Theorem 1 and Corollary 1 are the best possible with-




out further assumptions. The difference equation is (5).

Ex =y

(5)

a2x + p(k)y

Ey

2
where 0<a<1l and 0< ® = p(t) <1l-a . If p(k) =p, a
constant, then the conditons for stability are satisfied and all
solutions approach the origin as k — o,

Try the Liapunov function
22 2
V(k,x,y) =ax +y
Then

N(k,%,y) = -a-p(k)(x-y)" + 2 (p(k)-(1-a"))x"

+ (p(K)+1) (p(k)-(1-a7) )5

~a"p(K) (x-7)° 5 -2 8(x-y)° = -W(x,¥) = 0 .

1A

From Corollary 1, we see that all solutions are bounded and
x(k)-y(k) -0 as k -,
If

2
l-a
p(k) = ——

l+ak+l

for all k 2 O, then this p(k) satisfies the conditions given above and
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one solution of the difference equation (5) is

1 + ak -1 as k - »

x(k)

k+1

y(k) =1+ a 21 as ko

The results obtained are the best possible. Notice, however,
2
that this p(k) approaches 1l-a as k -, If, instead of
2 2
p(k) < 1-a”, we knew that p(k) = l-a - € for some € >0, then

we get
2 2 2 2 2
MN(k,x,y) £ -a d(x-y) -a €x - (1+d)e y = -Wl(x,y) 20

and the only point where Wl(x,y) =0 1s x =y = 0. In this

case, all solutions approach the origin as k — =,

III. AUTONOMOUS DIFFERENCE EQUATIONS. If the function f(k,x)

in (1) is independent of k, then the difference equation is said

to be autonomous, as in equation (6).
Ex = f(x) . (6)

Just as is the case for autonomous differential equations, solutions
to (6) are essentially independent of ko 80 we assume ko =0

and write the solution as x(k;xo). A function x*(k) 1is said
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to be a solution for (6) on (-w,o) if, for any k in (-0, ®),

we have for all k 2 ko

X(k-ko;x*(ko)) = x*(k).

A set B 1is an invariant set of (6) if x € B implies that there
is a solution x*(k) for (6) on (-w,») such that x*(k)e B for

all k and x*(0) = X

IEMMA 1. The positive limit set B of any bounded soltuion of (6)
is a nonempty, compact, invariant set of (6).
PROOF: Let x(k) be a bounded solution of (6) and B its
positive limit set. For each p € B, there is a monotone sequence
of integers {kn} such that k -« and x(kn) -p as n -,
Then each function yn(k) = x(k+kn) is a solution of (6) with
yn(O) = p as n —». From continuity in the initial conditions,
these functions approach the solution x(k;p) as n - », By
extending each function yn(k) to -k , we can extend the solution
x(k;p) to -w. The simultaneous convergence to x(k;p) and B
implies that x(k;p) € B for all k, and so B is an invariant
set, The fact that B is nonempty and compact is obtained from
the definition of a positive limit set and the boundedness of x(k).
For an autonomous equation, Theorem 1 can be strengthened

as follows.
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THEOREM 2. If there exists a Liapunov function V(x) for (6) on
some set G, then each solution x(k) which remains in G is
either unbounded or approaches some invariant set contained in

A as k o,

PROOF. From Theorem 1, x(k) »A U {x} as k -»®, If x(k) is
unbounded, then Lemma 1 does not hold. If x(k) is bounded, then
its positive limit set is an invariant set.

If the set M 1is defined as the union of all the in-
variant sets contained in A, then x(k) »M as k — = whenever
x(k) remains in G and is bounded. The set M may be consider-
ably smaller than the set A. Under the conditions of Theorem 2,
an unbounded solution can exist only if G 1s unbounded and there

is a sequence (x }, x € G, x —> and AN(xn) -0 as n -,

n

Corollary 1 can be restated in a similar manner.

COROLLARY 2. 1If, in Theorem 2, the set G is of the form
G =¢&(n) = (x: V(x) <n)

for some 1n > 0, then all solutions which start in G remain in
G and approach M as k - w,

This corollary can be used to obtain regions of convergence
for various iterative methods which cén be described by an autonomous

difference equation. A region of convergence is a set G CX such
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that, if x(0) € G, then x(k) € G for all k 2 0 and x(k)

approaches the desired vector as k — », The largest region of

convergence is the union of all regions of convergence. The
Secant and Newton-Raphson methods are treated as examples. For
a derivation and discussion of these methods see, for example,
Traub [{1] or Ostrowski [1].

The Secant method for finding a root of f(z) = 0 (f(z)
and z are complex numbers) is given by assuming values for Zq
and Zoy then forming the sequence {zk} by repeated application
of equation (7).

(2),1-2)T(2 1)

Zyyo = Zyaq ~ (1)
w2 =t T Y t(a)

We assume that, for every k, z, . # z, and f(zk+l) # (z,),
so this iteration formula is well defined for all k. Let « be

the desired root of f(z) =0 and let
2
fla + e) = £'(a)e + gla,e)e .

Then, letting 2z =a +e for each k, equation (7) becomes

eran = Mayep,ey p)epe )

where



1k

_eloyey e, 80 e ey

rope1) .

M(Ot,ek
f(a+ek+l) -f(OL-l-ek)

With the assumption that a 1is a simple root of f(z) = O and
g(a,e) 1is continuous and bounded in e, then M(a,ek,ek+l) is

continuous and bounded for e small enough.

K k4l
The difference equation (8) is obtained by letting

Xl(k) = e  and xe(k) = e,

Exl = X5

(8)

Ex

5 M(a,xl,xe)xlx2

. . . q a
Consider the Liapunov function Vq(xl’XE) = lel + | x| for

some g 2 1. Then
&V (x.,%x5) = -(1-|M(a,x,,%x.)x |q)|x |q
q\"1’ e Py T2/ 72 1

and ANq(xl,xg) £0Q if |M(a,xl,x2)x2| £ 1. Let Gq(n) be the

set Gq(ﬂ) = {(xl,xg) : (|Xl|q + lxglq)l/q < n}. Since =0

*2
implies lM(a,xl,xg)x2| = 0 <1, there is some 7 >0 such that
|M(a,xl,x2)x2| £ 1 for all (xl,xg) in Gq(n). From Corollary 2,
this Gq(n) is a region of convergence for the Secant method.

If the initial guesses z, and 2, are such that (xl,xz)e Gq(n)
for some 4q, then (x;,%,) will remain in Gq(n) for all k and

approach an invariant set contained in the set
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A = {(xl,xg) € aq(n) Py o= 0}. The only invariant set of equation
(8) with x, =0 is the origin x, = x, =0, so we get (xl,xg)—i(0,0)
as k —», and the method converges.

If, for |e| =1, we get

| £' (a+e)] 2 F, |alo,e)l

|
(o]

then we get that |M(o,x ,x,)x| <1 if |x,| <F/G. Thus, 7

y )

can be taken as the smaller of U and F/G. For the particular
equation f(z2) = zg-a2, we get | £'(o+e)| 2 2|a|-2n0 and |g(a,e)| =1
for |e| <n_. In this case, we can choose n =17 _ = % lof .

It should be noted that the set Gq(n), or even the union
of these sets for all q 2 1, is not always the largest region of
convergence. TFor the simple equation f(z) = ze-ag, almost any

choice of z provided only that z; # 2z, and £(z,) F £(z,),

12 %o

will lead to a sequence which will converge either to +x or to

-&¢. However, if z. and =z

1

, are in the region defined by Gq(n),

then not only will the sequence converge to « but this convergence

will be uniform in the sense that \zk-a|q + | o will ve a

Zk+1
decreasing function of k.

Corollary 2 can also be used to find a region of con-
vergence for the Newton-Raphson method, The Newton-Raphson method

for finding a root of f(z) =0 (f(z) and 2z are n-vectors) is

given by assuming a value for zl, then forming the sequence {zk}
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by repeated application of equation (9).
of -1
Zrgl = % [82 (Zk)] f(zk) (9)

where %g(zk) is the matrix of partial derivatives of f. Here,

we assume that [gi(zk)] always has an inverse. If the desired
z

root is a simple root, then this is the case. By letting « be

the desired root, expanding f(a+e) as
£(are) = [2Ha)le + £ (o)
oz o

and letting 2z, = Q+e

Kk K? then the difference equation becomes

epe1 = My(e)M(e)e - £ (e)]
where M (e) = [§§ ore) 1™ and My(e) = [Si(ave) - gg(a)]. Let
le| be some vector norm (see the Appendix). If o is a simple
root of f(z) =0 and f is twice continuously differentiable
at z = o, then, for each 71 > 0O, there exists a positive constant
k(n) such that, for all e with |e| <1, we have
IMl(e)(MQ(e)e-fo(e))l s k(n)|e|2. Then, letting V(e) = |el,

we get

a(e) 5 - (1-k(n)|e| )| e
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and AV(e) =0 if k(n)|el] = 1. Using Corollary 2, we get a
region of convergence G(no) ={z : |z-d < no} where 1 =
min(n,;i——). We can choose 17 80 as to maximize Mo thus obtaining
the best region of convergence obtainable with this Liapunov
function.

For the case where 2z and f(z) are complex numbers,
if there is some F >0 such that lfo(e)l s F|e\2 for all =z where

2 | £ (a)
-al = z =
| z-a] = 7, some n > T

, then we can get

F

K(n) =2 —F—n
| £' ()] -Fn

and the best (with this k(7)) region of convergence is given by

G(no) where

For the simple case f(z) = zg-ag, we get n_ = %lal.
However, a sharper estimate may be used for k(1) which results
in Ny = §|al. This latter case is the best possible. Any disc
centered at @ with radius larger than %lal will have points
insjide the disc which will map outside the disc on the next iteration
and AV(x) is positive for some values of x.

It should be noted that the region of convergence G(no)

is not always the largest region of convergence. For the simple
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2 2
equation f(z) = z -a, any initial guess Z) #0 will lead to

a sequence {zk} which will converge either to +a or to -C.

IV.PERIODIC DIFFERENCE EQUATIONS. If, in the difference equation

(1), f(k,x) is T-periodic for some integer T z 1 and fixed X,
i.e., f(k+T,x) = f(k,x) for all k,x, then the difference equation

is said to be a T-periodic difference equation. A function x*(k)

is said to be a solution for (1) on (-w,®) if, for any ko in

(‘w:“); we have for all k = ko
X(k;ko,x*(ko)) = x*(k)

A set B is an invariant set of (1) if x € B implies that there
is a k  and a solution x*(k) for (1) on (-»,®) such that

x*(ko) = x_ and x*¥(k)e B for all k.

LEMMA 2. Let x(k) be a solution of (1) that is bounded for all

k 2 k_. Then the positive limit set of x(k) is an invariant

set of (1).

PROOF: This lemma is proven in a manner very similar to that

used in Lemma 1. The ko used in the definition of an invariant

set is obtained in the following manner. If [kn} is a monotone
sequence such that x(kn) —p € B, the positive limit set of x(k),
then there is a sequence of integers [Mh} such that kn-MnT € [O,T)

for all n. The set [O,T)
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consists of a finite number of integers, so at least one of these
integers, k , must satisfy k= k -MT for an infinite number
of n's. The solution x(k;ko,p) is the shown to be the limit
of the functions yn(k) = x(k+kn) and is in B for all k, thus
demonstrating that B is an invariant set of (1).

Theorem 1 can now be restated for T-periodic difference

equations.

THEOREM 3. Let V(k,x) be a T-periodic, continuous funection which
is bounded below for all x 1in some set G.‘ For k = ko and x
in G, let AV(k,x) £ 0 and define the set A by

A = ((x,x) : &V(k,x) =0, x € G}. Let M be the union of all
solutions x(k) of (1) such that (k,x(k))e A for all k. Then
each solution of (1) which remains bounded and in G for all

k= ko approaches some invariant set contained in M as k — o,

PROOF. The function V(k,x(k)) is non-increasing and bounded
below, hence AV(k,x(k)) -0 as k —», The continuity of V
and AV implies that d((k,x(k)),A) -0 as k - . Since x(k)
must approach an invariant set as k =, it must approach M as
k = o,

An unbounded solution is possible under the conditions
of Theorem 3 only if G 1is unbounded and there exists a sequence

and AN(kn,xn) -0 as n-w If G

)

((kn,xn)} with ixnl - o

is bounded or if AV(k,x) is bounded away from zero for all
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sufficiently large x, then all solutions of (1) which remain in

G are bounded and approcach M as k —m,

V. ASYMPTOTICALLY ATUONOMOUS DIFFERENCE EQUATIONS. If the

difference equation (1) can be written in the form of equation
(10)

Ex = H(x) + F(k,x) (10)

where F(k,x) -0 as k -« uniformly for all x in any compact

set, the difference equation is sald to be an asymptotically

autonomous difference equation. With each asymptotically autonomous

difference equation, (10), there is the associated autonomous

difference equation (11).

Ex = H(x) (11)

IEMMA 3, The positive limit set of any bounded solution of the
asymptotically autonomous difference equation (10) is an invariant
set of the autonomous difference equation (11).

This lemma is proven in the same manner as Lemma 1.
Theorem 1 could now be restated in a manner similar to Theorem 2,
but the following, more general statement has proven more useful

in its applications.
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THEOREM 4. If a solution x(k) of the difference equation (1)
approaches a closed, bounded set A as k -, and if x(k) is
also a solution of the asymptotically autonomous difference equa-
tion (10), then it approaches the largest invariant set of (11)
contained in A as k — o,

As an example of the application of Theorem 4, consider

the difference equation (12),

Bx

cx - s(1-p(k))y
(12)

Ey = sx + c(1-p(k))y
where ¢ =cosw, s =sinw, O <w<2r, 0< &= plk) £ 2-e <2,
2 2
With the Liapunov function V(x,y) = x +y , we get

&V(x,3) = -p(k)(2-p(k))y" 5 -6 € ¥ 50

Applying Corollary 1, we get that all solutions for (12) are
bounded and y(k) -0 as k -,

Let xl(k), yl(k) be a solution for (12), then yl(k)
is bounded and approaches O as k - . Also, xl(k), yl(k) is

a solution of the difference equation (13).

BEx

cx - sy + p(k)y, (k)
(13)

Ey = sx + ¢y - p(k)y,(k)
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This difference equation is asymptotically autonomous to the

difference equation (1k4).

Ex

Cx - Sy (1)
1
Ey = sx + ¢y

The only invariant set of (14) with y = O is the origin x=y=0
since O < w < 27, By Theorem 4, all solutions of (12) approach

this invariant set, the origin, as k — =,

VI. PRACTICAL STABILITY. For many difference equations a solution

is considered a stable solution if it enters and remains in a
sufficiently small set. For example, under the proper conditions

all solutions of the Newton-Raphson equation (9) approach the

desired solution as k - »=. But, when the effects of round-off
errors are considered this is no longer the case. However, if

all the solutions become and remain close to the desired solution,
then the method is judged to be satisfactory. This type of stability

is called practical stability. The following theorem and corollaries

are concerned with practical stability for the difference equation
(15).

Ex = f(k,x) _ (15)

THEOREM 5. Given a set G C X, possibly unbounded. Let V(x)

and W(x) be continuous, real valued functions defined on G
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and such that, for all k and all x in G,

(i) Vv(x) z 0

(i1) a(k,x) = V(f(k,x))-V(x) = W(x) = a

for some constant a 2 0. Let the set S be the set

S ={xeG: Wx)

v

0}

Let b = sup {V(x) : x € 8} and the set A be the set

A={xeG: V(x)£b+ a}

Then any solution x(k) which remains in G and enters A
when k = kl remains in A for all k 2 kl.

The properties of S, A, and V(x) are used to show that,
if x(k) is in A, then x(k+l) is in A. The theorem follows

by induction.

COROLLARY 3. If & = sup {-W(x) : x € G-A} > 0, then each solution

x(k) of (15) which remains in G enters A in a finite number

of steps.
If x(k) does not enter A in a finite number of steps,
then
k-1
V(x(k)) = V(x(k)) + Z£=k AV(k,x(n))
o
=

V(x(ko)) - (k-ko)6



2k

and V(x(k)) = -» as k - », a contradiction since V(x) Z b+a

for all x in G-A.

COROLLARY 4. If G is of the form G = G(n) = {x : V(x) <n}
and the conditons of Theorem 5 and Corollary > are satisfied,
then all solutions which start in G remain in G and enter A
in a finite number of steps.

Corollary 4 can be used to study the effects of round-
off errors in the Newton-Raphson method., Without errors, the
Newton-Raphson method is given by equation (9). With errors, this

method is given by equation (16).

af
2 = 2

k+l = kT [gg(zk)]_l £(z,) + h(k,z)) (16)

where all that is known about the error term h(k,zk) is its upper
bound, say Ih(k,zk)l < € for some vector norm and some € > 0.

A value for € can be obtained by assuming that 2y is known

exactly and studying the steps of the computations in great detail

This error term includes the effects

of

of errors in the functions f(z) and —(2z), errors in evaluating

oz
f(z) and [%ﬁ z)]-l, and any other errors that may be encountered.
z

to estimate the error in =z .
k+1

Often it is not very difficult to find an estimate for €, the
problem is to determine the net effect of the term h(k,z) on the

positive limit set of a solution z(k).
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With the same assumptions on f(z) and the same expansions

used before, the difference equation (16) becomes
ey = M) (e)e - (e)] + by (X, e
With V(e) = |e|, we get
N(e) £ -(1-k(n)|el)le] + € =+We)=e

The set § Dbecomes

where

1 -~N1-bk(n)e

=€ + 2k(n)62 ...
2k(n)

b(n) =b =

provided that U4k(n)e < 1. If Uk(n)e 2 1, then W(e) 2 0 every-

where and the iterations may not converge. The set A is defined
by
A={e:Vie) =b+ €} ={e: |e| £ Db + €}

We note that, for n small enough, we have

We) s -(b - k(n)(b+e)°) = -5 .
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From Corollary 4. we have, if & > 0, then all solutions which
start in G(no) remain in G(no), enter A in a finite number

of interations, and remain in A thereafter. Here, 1, is not

guite the same as before. We must choose T such that k(no)no £ 1],

uk(no)e < 1, and b(no)-k(no)(b(no)+e)2 >0. If n, is the
smallest positive solution of nlk(nl) = 1, then choosing n_ <7,
will satisfy both k(no)no <1 and b-k(no)(b+€)2 > 0. The
condition Mk(no)e < 1 becomes a condition on the precision or
accuracy required in the computations.

Thus one effect of round-off errors is to reduce the
region of convergence. Another effect of round-off errors is
that the error of each 2y cannot generally be reduced much below

2 .
the value b+e = 2¢ + 2k(n)e + ... no matter how many iterations

are preformed. The value b+e 1s called the ultimate accuracy

obtainable with round-off errors. WNotice that, for small ¢,
the ultimate accuracy is approximately 2€, or about twice the
round-off errors committed at each step.

If the ultimate accuracy is large, then the method is
judged to be a poor since the effect of small round-off errors is
a large error in the computed solution. If the ultimate accuracy
is small, then the method is judged to be a good one since small
round-off errors have a small effect on the computed solution.

In this sense, the Newton-Raphson method is judged to be a good

method.
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For a nonsingular matrix A, many iteration methods for
solving Ax = b for the vector x are described by the difference

equation (17)

Xep = B *oC (17)
where the matrix B and the vector ¢ are determined in some
fashion by A and b. For example, if A =Q + R, then B = o R
and ¢ = Q—lb would be a possibility. B and c¢ must have the
property that X, = on+ ¢ if and only if Axo = b. The iterations
x, will converge to the solution x if and only if p(B), the

k

spectral radius of B, is less than one. For a derivation of
several of these methods, see, for example, Kunz [1l] or Hildebrand
[1]. Choose a vector norm |x| such that |B| = A < 1. Since
p(B) < 1, this can always be done (see the Appendix).

Let x be the desired solution and let x =x + e .
0 k (o} k
Then the e

X satisfy the difference equation

e = Be, + h(k,e

k+1 k)

where the term h(k,e represents the round-off errors committed

»)
at step k. We assume that there exists positive constants 1 and
€ such that |h(k,e)] s € for all k and all e, |e| <n.

Try the Liapunov function V(e) = |e|. Then
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&V(e) = -(1-A)]e|] + e =W(e) s ¢

Then the set S 1is given by

1-A
and b = 1§X . The set A is given by
2-
A={e:Vie)sb+e} ={e:]|el = 1:% e},
2-\
If n>35 6 then we can choose

G=(e:V(ie)<n} ={e:|e <n)

and Corollary 4 holds. Thus, if e, is in the set G, then the

1
solution will remain in G, will enter A after a finite number
of iterations, and will remain in A for all following iterations.

By looking at the set A, we see that the ultimate

accuracy is given by b + €.

We note that, if A is very nearly one, then this ultimate accuracy

may be large even if € 1is small. For example, if A = 1l-, then
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-1 .
b+e=(a" +1l)ez €/a, and €/a may be large. This indicates
that these iteration methods will give acceptable results only if

A = |B| 1is considerably less than one.

APPENDIX -- é THEOREM gg MATRIX NORMS., Let x be an n-vector and

x* its complex-conjugate transpose., Given some positive definite

matrix B, let the norm of x, |x|, be defined by
2
| x| © = x*Bx (A1)

Other vector norms are possible, but vector norms of this type are
all that are considered here,
Given a matrix A, the matrix norm of A, |A|, can be

defined in terms of the vector norm by
|A] = min {b: |Ax| = b|x| for all x # 0} (a2)

In addition to the usual properties of a norm, this matrix norm
satisfies the following.

a) |Ax| = {4 ||

b) |A = |A| for any eigenvalue A of A.

c) p(a) s |4l

where p©(A), the spectral radius of A, is the absolute value of
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the largest eigenvalue of A.

THEOREM: Let AO be a matrix with spectral radius 8, = p(AO).

For each a > a,s there exists a vector norm such that
a =la| sa (A3)
PROCF: This theorem is proven by considering the equation
IAOXI2 - a2|x|2 = x*(AgBAO-aEB)x - —a°x*Cx 5 0
where C 1is some positive definite matrix and
A*BA_ - a°B = -a'C (AL)

For any positive definite matrix C, let B be the

positive definite matrix defined by
P -2k, yk k
=2 B A
B —0® AO CAO (A5)

Since a>a = p(AO), this sum converges absolutely and B is
perfectly well defined. Furthermore, this B satisfies equation
(A4) and can be used to define a vector norm as in (Al). With this

norm, we get
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W

| A x|2 - a2|x|2 0
o
or

|A0x| = a|X|

From the definition of the matrix norm given in (A2), we get |A0| < a.
The other half of the inequality (A3) is a basic property of matrix
norms.

The significance of this theorem is that a vector norm
can be chosen so that the matrix norm of a matrix is made as close
to the spectral radius of the matrix as desired. If a, < 1, then
letting a = %(l+ao) < 1 leads immediately to the following

corollary.

COROLLARY. A necessary and sufficient condition for the spectral
radius a, of a matrix AO to be less than one is that there exist
a vector norm such that the matrix norm of Ao satisfies |AO| < 1.
It should be emphasized that the vector norm in the theorem
and corollary depends quite heavily on the matrix under consideration.
Given two different matrices Al and A2 both with spectral radii
less than one, there may not exist one vector norm so that both
|A;l <1 and |Ay] <1
While the vector norm used satisfies all the requirements

of a vector norm, it may be an "acceptable" norm. For example, the

"unit sphere" S = {x : |x| = 1} is an ellipsoid and the ratio of



32

the longest axis to the shortest axis may be very high. Equation
(AS) almost never can be used to compute the matrix B and resort
must be made to solving (A4) directly for B. This may be a dif-
ficult task and it may be impossible to compute B +to any desired
degree of accuracy. This means that it may be very difficult to
compute this norm of a vector.

This theorem and corollary are easily extended to cover
continuous linear operators in a Hilbert space.
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